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The propagation of small disturbances in a radiating gas 

By WILBERT J .  LICK 
Harvard University, Cambridge, Massachusetts 

(Received 2 July 1963) 

The influence of radiation on the propagation of small disturbances is investi- 
gated by considering a signalling problem and obtaining approximate limiting 
solutions. It is found that, for small time, the main disturbance travels a t  the 
isentropic speed of sound. For some intermediate time, the main disturbance 
travels at the isothermal speed of sound. For long time, the disturbance travels 
at the isentropic speed of sound. The decay and diffusion of these waves are 
also determined. 

1. Introduction 
The problem of the propagation of small disturbances in a radiating gas has 

been previously examined by Vincenti & Baldwin (1962). These authors obtained 
an integro-differential equation for the velocity potential q5. They then studied 
solutions that were periodic in time. Although some physical insight may be 
obtained from these periodic solutions, it  is more revealing to consider a general 
signalling problem due to a disturbance starting a t  t = 0 with conditions given 
on x = 0. In  this situation, periodic waves with all possible frequencies are 
present and combine to form travelling waves which may decay and diffuse 
with time. 

In  order to solve this signalling problem readily, a differential equation for # 
is obtained from the basic integro-differential equation by a substitute-kernel 
technique previously shown to be quite accurate (Krook 1955; Lick 1963). 
The differential equation obtained by this method is 

where a2, and b2, are constants, and as and aT are respectively the isentropic and 
isothermal sound speeds in the undisturbed medium. 

The above equation is similar to the wave equation studied extensively by 
Whitham (1959), which is 

where cl, c2 and a are different wave speeds and h is a known constant. For 
equation (1.2), Whitham has shown that for small time the higher-order term 
dominates, while the lower-order term will ultimately describe the main dis- 
turbance. In  addition, the lower-order term will produce an exponential damping 
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of the wave described by the higher-order term. In  turn, the higher-order term 
will produce a diffusion of the wave described by the lower-order term. 

By extending these results to equation (1.1)) it is natural to conjecture that 
for small time the first term dominates. The initial wave travels at the isentropic 
speed of sound and is exponentially damped due to the second term. For very 
long time, the third term dominates. Therefore, the wave again travels at the 
isentropic speed, but is diffused due to the second- and higher-order terms. For 
some intermediate time, the second term dominates. The wave travels at the 
isothermal speed of sound, is diffused due to the first term and exponentially 
damped because of the presence of the third term. The possibility of this type of 
motion is examined in the present paper. 

2. Basic equations 
General formulation of the problem 

The particular problem considered is that of the propagation of small distur- 
bances through a semi-infinite radiating gas bounded by an infinite, plane, 
radiating wall at  x = 0. Effects of viscosity and heat conductivity are neglected. 
The energy density and pressure of radiation are assumed to be small by com- 
parison with the energy density and pressure of the gas and are neglected. 
For a perfect gas with constant specific heats, the equations of state and the 
equations of conservation of mass, momentum, and energy are then 

Y+u*-+p*p ap* au* = 0 
at ax ax , 

aT* aT* ap* a * 
at at ax 

p*cp __ +p*u*cp - ~ - u* = Q,, 

( 2 . 2 )  

(2.3) 

(2.4) 

where p* ,  p*, T* ,  u* are respectively the pressure, density, temperature and 
velocity of the gas at the position x and time t .  R is the gas constant and c p  
is the specific heat at  constant pressure. Q, is the net radiative heat input to 
the gas per unit volume per unit time. In  terms of q,, the net radiative heat 
flux, Q, is given by 

If it  is assumed that the radiative absorption coefficient a is independent of fre- 
quency and temperature, q, is given by (Kourganoff 1952; Lick 1963) 

Q, = - aqr/aX. (2 .5 )  

(2.6) 
E,  is the exponential integral defined as 

c is the Stefan-Boltzmann constant and cw is the emissivity of the wall, here- 
after assumed to be one. 

18-2 
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For time t < 0, it  is assumed that the gas is a t  rest with temperature To, pres- 
sure po,  and density po. The wall is stationary with temperature To. For t > 0, 
the wall is moved with a constant velocity /3 and simultaneously its temperature 
is raised to To + SIR where 6 is a constant. 

Linearization and kernel substitution 
Equations (2.1)-(2.7) may be simplified by the usual process of linearization. 
If we confine our attention to phenomena such that 

p* = po+p, p* = p o + p ,  T* = To+T, U* = U,  

where p, p ,  T and u are small perturbations, then equations (2.2)-(2.4) become 

au 

au 1 ap 
at po ax ' 

*+/ lo-  at ax = 0,  

-+- - =  0 

By differentiating the equation of state and linearizing, one obtains 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

It is convenient to introduce the usual velocity potential + which satisfies 
the relations 

and therefore the momentum equation is identically satisfied. We define the 
functions 

= a+px, p = a#lat, 

a2# 2 a 2 +  a2+ 2 a2+ 
at a t2  ax 

a% = 7YolPo7 a% = PolPo, 

W ,  = 2-a,G, W, - --aT2, 

where the isentropic and isothermal speeds of sound in the undisturbed medium 
are given by 

and y is the ratio of specific heats, cp/c,. 
By using the above definitions, the left-hand side of equation (2.10) becomes 

Similarly there results from equation (2.1 l), 

(2.12) 

(2.13) 

The right-hand side of equation (2.10) may be simplified by the following 
process. Differentiate equation (2.6) with respect to t and then linearize to obtain 
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At  this point it is convenient to substitute an approximate kernel of the form 
ae-baz for the correct kernel E,(ax), and also ae-bax/b for E3(ax). The constants 
a and b are determined by requiring that the area and first moment of the 
exponential kernel be equal to those of the exponential-integral kernel. It 
is found that a = $ and b = 8. From the above equation, one obtains 

where b, = ba. By substitution of equations (2.12) and (2.15) into (2.10), there 
results 

a w ,  7 -  1 a2qr 
at axat 

- 

where a: = lSa(y - 1 )  aaT:/poR. 

Differential equation for the velocity potential 

If equation (2.16) is differentiated twice, one obtains 

(2.17) 

By the substitution of equation (2.16) into (2.17) t o  eliminate the integral term, 
one obtains 

(2.18) 

The problem is now completely determined by the above equation with the 
following boundary conditions : 

t = 0 :  #=q5 t=Qt t=o;  

x = o :  T,=O ( t < 0 ) ,  

(t < O),  

= p ( t  > 0 ) ;  

= 6/R (t  > 0 ) ,  

u = 0 

Note that since heat conduction and viscosity have been neglected, the tem- 
perature of the gas a t  x = 0 is not necessarily equal to the temperature of the 
wall. 
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3. Solution of differential equation 
Solution by Laplace transformation 

If a Laplace transformation is applied to equation (2.19), the following differen- 
tial equation is obtained 

a4g , 3- 
4 & + @ + b I P  4 = 0,  (3.1) 

where 4 is the Laplace transform of 9, 

and 6, and S, are defined as 

6, = u,!$(p+a:/y), 8, = p ( p 2 + a ; p + b ; a g ) .  

The solution of equation (3.1) can be found in the form 

where y,,, = - - 8 2  + - 1 (8; - 4b; p3 4)4]'. [ 26, - 26, 

By the use of the inversion integral, the solution of equation (2.19) can then be 
written as 

2+ = ~ ~ A , e x P ( ~ t + y , s ) ~ ~ + ~ ~ A , e X p ( p t t . i , z ) d p .  (3.3) 

r is the path such that Rep  = const. and to the right of all singularities. 
The integration constants A ,  and A ,  are determined by requiring the solution 

(3.2) to satisfy the Laplace transform of the modified integro-differential 

where c, = b,(P2 - a f Y : ) / ( r l +  bl)? (3.6) 

c, = b1(P2--%Y;)/(Y,+bl). (3.7) 

Alternatively the solution (3.3) could be obtained directly from (2.16) by 
Laplace transform methods without forming the differential equation (2.19). 
However, the insight into the character of the solutions obtained from the 
knowledge and use of Whitham's investigations would be lost. 

Since A,, A,, y1 and y2 are such complicated functions ofp,  a complete investi- 
gation of the solution would involve prohibitive labour. Simplifying approxima- 
tions will be used in the following sections in the evaluation of the above integrals. 
To restrict further the amount of algebra required, the assumption will be made 
that a:lblas 3 ' .  Since 

a2,/bla, ,., agTl/poc,To, 
this assumption is equivalent to restricting the investigation to the important 
and most interesting case when the temperature of the gas is very high and the 
radiative energy is much greater than the internal energy of the gas. 
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If a:/b,a, 9 1, the approximate locations of the branch points of y, are 

y1 has the branch points p,, p,, p3,  pa  and 

p5 = O ,  p6 = - (3.10) 

Approximation for  small time 

An approximate evaluation of the integrals occurring in equation (3.3) can be 
accomplished by substituting expansions for large p for the functions Al, , and 
y,,,. Since large p corresponds to high frequencies, this approximation is valid 
when the high-frequency waves dominate, i.e. when t is small or near discon- 
tinuities in the wave form. 

For large p ,  
P a: Y- 

y2=-b1+-+0 - . 

Y1=---- __ as  a s  ( 2Yl) ’ 

blat 2P (3 
(3.11) 

(3.12) 

A ,  and A ,  can be approximated to the same order by carrying out the integra- 
tions in (3.3) and differentiating to find u and p ,  one obtains 

= 6$a:blt2e-bix ( t  xlas), I 
p =/3poasexp( - ~ a ~ t ) + 8 p o ~ a f t e x p ( - b l x ) - 8 p o ~ a ~ b , a s  Y-1 

= 8+p0a2, t exp ( - b l s )  ( t  < xlas). 

Asymptotic approximation for  the isentropic wave 

(3.13) 

(3.14) 

It can be shown in general that the effects of wall temperature are of lower 
order than the effects due to the wall motion. This can be seen for the particular 
case of small time from equations (3.13) and (3.14). In the following, the wall 
temperature effects will be neglected (S = 0) since the essential features of the 
wave motion can be found without this additional complication. 

For large time, the form of the integrals in (3.3) suggests evaluation by the 
method of steepest descent. In  this approximation, the dominant contributions 
to the integral come from the neighbourhood of the saddle-point and perhaps 
from any singularities enclosed by the contour path deformed to pass through 
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the saddle-point. It will be seen that the first integral in (3.3)) asymptotically 
describes a wave which has the properties of an isothermal wave, while $2, 

the second integral in (3.3)) asymptotically describes a wave which has the 
properties of an isentropic wave. 

For the evaluation of &,) we anticipate that the saddle-point will be located 
near the origin. We then can approximate y2 and A ,  by expanding these func- 
tions for small p .  It is found that 

(3.15) 

A2 = -Pas/P2+0(1/P).  (3.16) 

Write the second integral in (3.3) as !A2 exp { f ( p )  t }  dp)  where 

f(P) = P + Y Z ( X / t )  
y - 1  a; x = p  1-- + p  __ __-  ( uzt) ( 2y ) b f u ;  a&' 

(3.17) 

Then the saddle-point is located at  the point p ,  at whichf'(pJ = 0. From this, 

5 - ast we find that 

The contribution to q52 along the path of steepest descent is then 

(3.18) 

(3.19) 

since the path of steepest descent is Rep = const. The usual steepest-descent 
procedure has been modified by retaining p2 = (pl+i7)?- in the integrand in 
order that the solution be valid near the wave front at  x = ast, i.e. near p ,  = 0. 

It can be shown that 

(3.19) then becomes 

where 

The contribution from the singularity at  the origin is 

(3.22) 

= 0  

If the contour path is taken as in figure 1, the dominant contributions are from 
the path of steepest descent near the real axis and from the singularity at p = 0 
and other contributions are negligible in comparison. 
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Asymptotic approximation for  the isothermal wave 
Inorder to evaluate$,, the first integral of (3.3), bythe method of steepest descent, 
we anticipate that the major portion of the wave front will be described when the 
saddle-point position is such that b;aiIa2, < lp,l < a;/y. This assumption can 
always be checked once the solution is obtained. By expanding y1 and A, in 
this region, one finds that 

p -~ 0 

B.P - _ _ _  -.-, 
.?) L _ _ _ -  

(3.23) 

The position of the saddle-point is therefore 
x-u,t a; 

P , = y - -  
Y - 1  

(3.25) 

(3.26) 

The contribution from the path of steepest descent is 

$1 = PUT exp 

- c4x4 exp ( - C: (?:?@)) (3.27) 
X 

where 

TO first order, the contribution from the singularities near the origin is 

(3.28) 
= o  ( t  < XI.,). 

Equations (3.27) and (3.28) describe the dominant contributions to 
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4. Discussion 
The nature of the solutions found in the previous section can be determined 

readily by examining a characteristic property of the waves, say the velocity 
of the gas, for the three limiting cases. The velocity is given by 
I. Xmall time 

11. Isothermal wave 

X 
U = ( 1  - gerfc (-- '31 x - a T t  I 

x4 ) - exp (- 

7 - 1  b2a2 x 
x exp (-- 18 a? -) aT ( t  < x / a T ) * ]  

111. Isentropic wave 

From equation (4. l) ,  it can be seen that, for small time, the wave front propa- 
gates at  the isentropic speed of sound and decays exponentially with a character- 
istic decay length defined by 

y-1 a2,x 2Y as  - 1  or x=- -  
2Y as  y - 1  a?' (4.4) 

That is, as the gas temperature becomes higher and therefore the radiative 
energy transfer increases, the wave attenuates more rapidly. The veIocity u 
is discontinuous across the wave front. 

The wave described by (4.2) propagates at the isothermal speed, eventually 
decays exponentially with a decay length 

2Y x=-- 
y - 1 b2,ai 

and also diffuses. A characteristic diffusion length is defined by 

(4.5) 

a2, (x-aTt)2 B 
' ( Y - ' )  aTx  = 1 or x-a,t = [ y a T x ]  . (4.6) 

For some earlier time, the last term within the brackets in (4.2) is important and 
describes the growth of the wave. 
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The wave described by (4.3) propagates at the isentropic speed, grows since 
the second term becomes negligible as x-6, diffuses with a diffusion width given 
by 

but does not decay. 
(4.7) 

The general result is that as wave I decays, wave I1 begins to grow and reaches 
a maximum. As wave I1 decays and diffuses, wave I11 begins to grow and diffuse. 
A schematic diagram of this motion is shown in figure 2 .  The motion is as pre- 
dicted earlier by analogy with Whitham’s results. 

Precursor 
radiation 

FIGURE 2. Schematic diagram of wave motion. I decays exponentially with u, p and T 
discontinuous across the wave. I1 diffuses with diffusion width proportional J t  and decays 
exponentially. I11 diffuses with a diffusion width proportional to 41. u, p and T are 
continuous across I1 and 111. Disturbances are present in front of the waves due to 
precursor radiation. 

It is of interest to investigate the diffusion zones of wave I1 and I11 more 
carefully. After a certain time when wave I1 has decayed appreciably, say when 

aT 3 

2Y a; x =  __- 
Y- 1 b:ai 

then the diffusion width of I1 is given by 
x - u , ~  = 2/b, = O(l/a) .  (4.8) 

But l / a  corresponds to the mean free path for radiation. Therefore the width 
of the diffusion zone for the isothermal wave is less than a mean free path for 
radiation until it  has lost most of its energy and has decayed. At the same time, 
the ratio of the diffusion widths of the waves I1 and I11 is given by 

The diffusion width of the isentropic wave is therefore much greater than the 
diffusion width of the isothermal wave and, in particular, much greater than a 
mean free path for radiation. 
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Because of its narrow diffusion zone, the isothermal wave loses energy and 
eventually disappears. The diffusion zone of the isentropic wave is comparatively 
wide. The radiative energy diffuses through the wave but is not lost from the 
wave. Hence this wave is essentially isentropic. 

From equation (2.11) and the asymptotic solutions, the ratio of the tempera- 
ture gradients at  the wave fronts for waves I1 and I11 at a particular time can be 
determined and is given by 

(4.10) 

Since the total change in temperature through a wave is proportional to the tem- 
perature gradient and wave width, it follows from (4.9) and (4.10) that 

(4.11) 

The temperature change in the isothermal wave is hence much less than the 
temperature change in the isentropic wave and the wave is essentially isothermal. 

There is a question as to what approximation is introduced by the exponential 
kernel substitution; in particular, whether the kernel substitution and differen- 
tiation technique has affected the main features of the wave motion. This can 
be checked most readily by applying a Fourier transform to equation (2.16). The 
following equation results, 

[ 2a 3 1  -+C2 -El(k)+-  ---+a%k2-+C2agk2 a6 -B l (k )+-  6 = 0, (4.12) 
d36 at3 [ 2a 3 1 at2 at 

where 6 and s; are the Fourier transforms of 4, E;, i.e. 

C is a constant, and E; = abe-blx. If the exponential integral kernel is used, the 
resulting differential equation is identical except that [ - k;(k) + 3/2a] is replaced 

As k + co, both E’, and I?; disappear and the above brackets differ by a factor 
of 413, As k -+ 0, the first three terms of both brackets are identical. Since only 
the first few terms are needed to evaluate the inversion integrals in the first 
approximation, it seems that to this approximation the exponential kernel 
substitution will not modify the essential results either for large or small time. 

by [ - 4 ( k ) + 2 / a I . -  
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